中六級 生物科

荃灣川龍溪澗生態系統

考察報告

北角協同中學 2008-2009 年 6S 中文生物組

組員:歐陽浩權(1)

林淑娱(11)

梁凱蕾(15)

李 永(17)

盧曉青(18)

施毅明(27)

黃倬瑩(30)

目錄

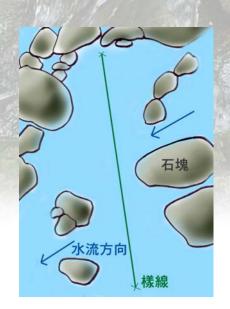
簡介	P1
考察位置	P1-P2
考察工作	P3-P4
實驗室工作	P4-P5
數據結果	P6-P8
數據分析與討論	P9-P10
結論	P11

簡介

户外考察的目的[,]是希望學生能透過考察過程[,]更了解大自然生態系[,]生物間的關係。利用一系列考察儀器,學習如何收集數據,探究影響生物和生境的各項因素。

是次考察活動於 2009 年 4 月 16~17 日進行,共 2 日 1 夜,在學校生物科唐永強老師和可觀自然教育中心的職員帶領下,我們到了荃灣川龍的 2 條溪澗進行考察。我們利用了一系列考察儀器,收集各種數據,以圖鑑辨別各種生物,並探究:

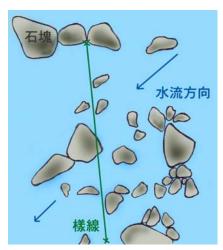
- ◆ 影響該處生態環境的各項生物因素和物理因素(水質情況)
- ◆ 生物間的相互關係
- ◆ 生物如何適應其生活環境我們會比較兩地的水質並分析生物的分佈


考察位置

川龍是香港荃灣的一個客家村落(包括新界原居民曾氏),位於大帽山腳,我們考察的2個地點中,地點1較接近民居,地點2較遠離民居。

地點 1

地點 1 鳥瞰圖


地點 1 的位置接近民居,我們的考察位置為上游,去水道的尾端,附近有竹樹,發現生物較小,我們留意到去水道的尾端有蘚類,附近也有芋,但這些陸生植物都被水蓋過,所以估計我們的考察位置原本並沒有水流,有水流是由於前一晚的大雨造成。考察地點 1 時,天氣晴朗。

地點 2

地點 1 鳥瞰圖

地點 2 的位置較遠離民居,生物較多,但水位較淺,有大量植物,考察地點 2 時,中途下微雨。

考察工作

● 量度溪流水深

利用 3 米長樣線橫過溪流,以尺每 0.1 米量度 1 次水深

樣線

• 記錄環境及生物

繪畫環境鳥瞰圖,利用各種用具協助捕捉生物並拍照, 同時以圖鑑辨別各種生物把生物記錄下來

用具包括:網、鏟、掃子、毛筆、鉗子、盆和筲箕

• 抽取樣本

小心地把兩個取樣瓶以溪水完全裝滿,以便運回實驗室作水樣本的化學分析 如發現細小藻類植物,可收集小量帶回實驗室以顯微鏡觀察

• 收集物理因素數據

用光度計量度水面和水底的光照度

光度計 用流速計量度水流的平均流速

流速計 第800年8月 - 第200年8月 -

在範圍內不同位置量度以上各個因素,然後取其平均值

實驗室工作

• 水樣本的化學分析

我們利用了一系列化學物品和儀器,找出了水的

- ◆ 酸鹼度(pH 值)
- ◆ 氨含量
- ◆ 磷酸鹽含量

用溫度計量度空氣和水底的溫度

溫度計

- ◆ 總溶解物
- ◆ 總懸浮物
- ◆ 化學需氧量

♦ 酸鹼度-pH

用 pH 計量度。

◆ 氨含量

加 1 亳升的 C 溶液(奈氏試劑)進 25 亳升的樣本中,把溶液搖動。若呈現黃色即表示有氨態氮的存在。用分光光度計量混合液的透析度並與標準曲線作比較,就可以找出樣本中的氨含量。

◆ 磷酸鹽含量

將 1 滴 A 溶液(鉬酸鹽/硫酸)和 1 滴 B 溶液(氯化亞錫)加入 25 亳升的樣本中,搖動混合,若呈現藍色即表示磷酸鹽存在。用分光光度計量度混合液的透析度並與標準曲線作比較,就可以找出樣本中的磷酸鹽含量。

◆ 總溶解物

用總溶解物計量度。

◆ 總懸浮物

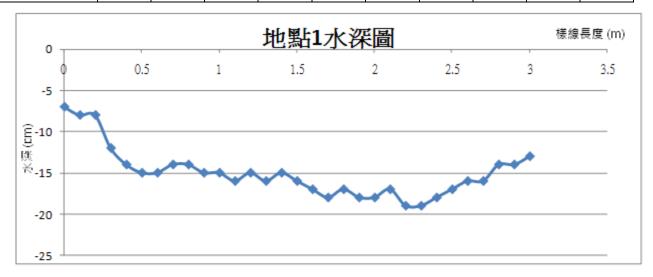
秤一張已烘乾的濾紙,用它過濾 100-500 亳升的水樣本,然後扎它烘乾後再秤。增加的數值就是 懸浮身的重量。

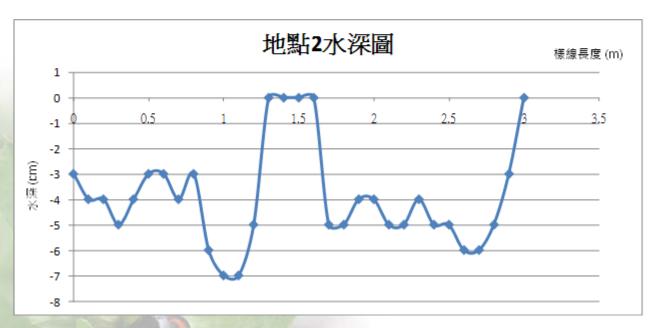
◆ 化學需氧量(C.O.D.)

- (i) 把大約 5 亳升的濃硫酸加進 199 亳升的水樣本中,混匀。
- (ii) 加入 10 亳升的 0.05M 高錳酸鉀溶液—氧化劑,沸水浴 30 分鐘。
- (iii)加入 100 亳升的 0.0125M 草酸鈉溶液—還原劑。
- (vi)用 0.01M 高錳酸鉀溶液捲混合物滴定(終點微紅色)。 知道被還原的高錳酸鉀份量,就可計算出需氧量。

• 觀察生物樣本

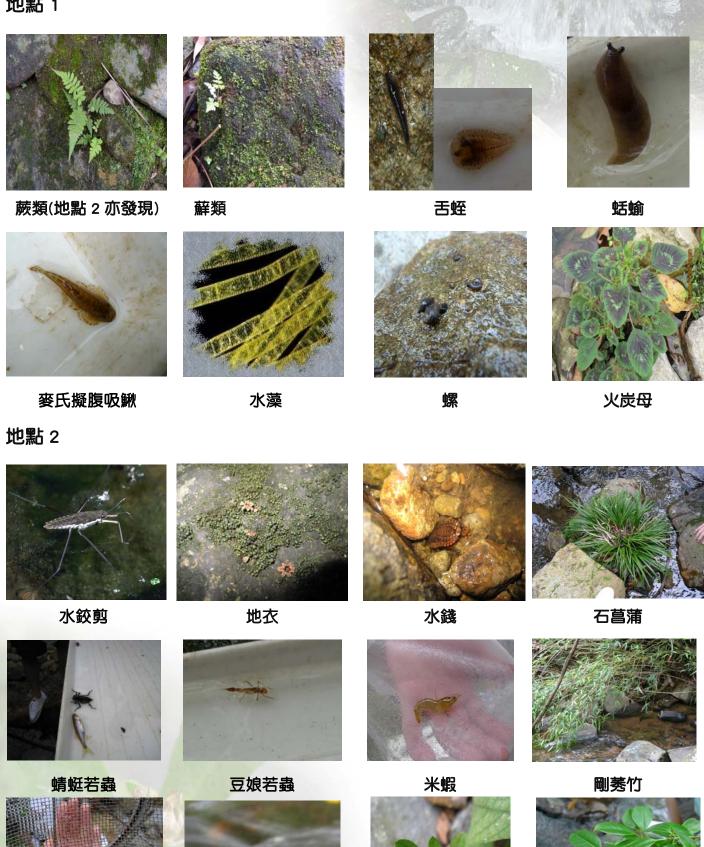
把收集了的藻類植物利用顯微鏡觀察所含藻類以圖鑑辨別


數據結果


溪流水深

取樣位置(m)	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
地點 1 水深(cm)	-7	-8	-8	-12	-14	-15	-15	-14	-14	-15	-15
地點 2 水深(cm)	-3	-4	-4	-5	-4	-3	-3	-4	-3	-6	-7

取樣位置(m)	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
地點 1 水深(cm)	-16	-15	-16	-15	-16	-17	-18	-17	-18	-18
地點 2 水深(cm)	-7	-5	0	0	0	0	-5	-5	-4	-4


取樣位置(m)	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
地點 1 水深(cm)	-17	-19	-19	-18	-17	-16	-16	-14	-14	-13
地點 2 水深(cm)	-5	-5	-4	-5	-5	-6	-6	-5	-3	0

所發現生物

地點 1

蝸牛

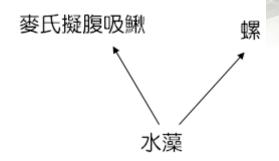
魚

六斑月瓢蟲

水榕

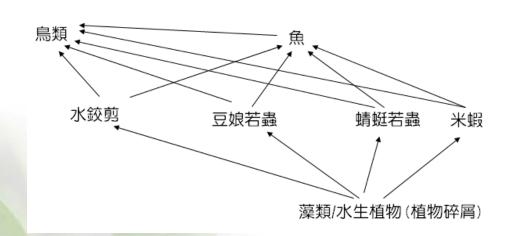
物理因素數據

		地點 1	地點 2
光強度(Lux)	水面	7750	8340
	水底	2770	7490
溫度(°C)	氣溫	26.9	22.6
	水溫	22.4	23
平均流速 (m/s)		0.795	0.155


水質化學數據

	地點 1	地點 2
氨含量(ppm)	2	0.3
磷酸鹽含量(ppm)	5	4
PH值	7.3	7.3
總溶解物(ppm)	44	37
總懸浮物(g/I)	0.02	1.205
溶氧量(mg/l)	4.48	5.32
化學需氧量 (mg/I)	12.04	10

數據分析與討論


◆ 生物如何適應環境及生物相互間的關係

在地點 1,我們找到的生物較小,當中找到的水蛭,其身體末端擴大成吸盤,用來活動和依附在石頭表面,我們亦找到麥氏擬腹吸鰍,其體長而頭扁,口部位於下方,胸鰭和腹鰭寬闊平張,形成吸盤狀的吸附器官,地點 1 的水流較急,麥氏擬腹吸鰍的吸附器官有助它附在湍溪的石塊和卵石表面。麥氏擬腹吸鰍和螺同樣以水藻作食物,所以它們的關係為競爭,競爭食物。

在地點 2,我們發現地衣,地衣是由微觀的綠藻或藍藻與絲狀的真菌群叢組成的共生生物。在構造簡單的地衣種類中,因菌絲很少,且生長於藻類的膠質膜鞘中,所以菌類可自藻類吸收養分。但在以菌類為主的地衣中,藻類可以行光合作用製造有機養分以供應菌類利用,而菌類可將地衣原葉體固著於生長基質上,並供給藻類水分及礦物質,形成一種互惠共生關係。地點 2 的水流較慢,我們發現很多水鉸剪,水鉸剪棲息於靜水或溪流緩流水面上,以掉落水的水蟲體液/植物碎屑為食。

我們於地點 2 發現的水鉸剪、蜻蜓若蟲、豆娘若蟲和米蝦均以藻類/水生植物(碎屑)為食物,所以它們的關係是競爭,而魚又會捕食這些水棲昆蟲和米蝦,鳥類同時會捕食水棲昆蟲、米蝦和魚,所以魚和鳥類的關係是競爭和捕食。

我們在地點 1 和 2 都發現蘚類和蕨類。蘚擁有鈿小呈絲狀的假根,用來固定植物的位置,並吸收水份和養份。它們的表面沒有角質層來減少水入流失,因此,蘚在陸地生境的適應性較差,主要分佈在潮濕陰暗的地方。蘚只能在潮濕的環境生長,並以水作為繁殖媒介。蕨大多生長在潮濕陰暗的地方,例如是牆壁和岩石裂縫中。蕨的生境光線比較少,因此它們的生長速度相對較緩慢。由於蕨在無遮蔽的環境中生長,葉片通常都較厚而堅韌。此外表皮層和角質層都較厚,可減少水分流失。

◆ 比較 2 個考察點的水質與發現的指示生物

在水質方面,地點 1 的氨含量、磷酸鹽含量、化學需氧量都較地點 2 的為高,溶氧量較地點 2 的為低。氨含量、磷酸鹽含量和化學需氧量可作為水質污染的指標,氨是由死去植物及動物排泄物中的蛋白質而產生的副產品。同時,其亦會由尿液分解所產生的尿素及尿酸所組成。而磷可經由氮廢水的不同來源,例如工業廢水、農業廢水、動物廢物、死去的動植物而進入水中。化學需氧量是以化學方法測量水樣中需要被氧化的還原性物質的量。 水樣在一定條件下,以氧化 1 升水樣中還原性物質所消耗的氧化劑的量為指標,折算成每升水樣全部被氧化後,需要的氧的毫克數, 它反映了水中受還原性物質污染的程度, 該指標也作為有機物相對含量的綜合指標之一。根據所得數據,地點 1 的受污染情況較地點 2 高,這可能由於地點 1 接近民居,被民居排放的污水污染。

溶氧量方面,氧氣是一種透明無色、無臭無味的氣體,當其在溶解在一定範圍的水中,便成為水溶氧氣。水中的生物包括植物和動物都需要水溶氧氣來維生命。因此,定斷水溶氧氣的含量可從中測量水的質素,地點2的溶氧量較地點1為高,所以地點2較適合生物生存。

在地點1,我們發現較多水蛭和蛞蝓,它們對水質的要求不高,這也是我們估計地點1水質較受污染的原因之一。在地點2,我們發現米蝦,蝦對水質的要求較高加上我們在地點2找到生物較多,所以估計地點2的水質較好。

至於總懸浮物方面地點2的數值較地點1高得多,我們相信這是由於在收集水樣本時,地點2水深較淺,我們收集水樣本時過程可能有沙石沖入取樣瓶內使數據出現誤差。

◆ 人類排放污水對溪流生態的影響

人類排出的家居污水含有糞便、尿液和廢水。這些污水含有細菌和養分,能促進植物、藻類、和微生物繁殖和生長。如果把污水直接排放至河流,水中的藻類和細菌便會迅速生長,消耗水中大量氧,以致水生生物窒息而死。藻類死亡後會被細菌分解,過程中細菌會消耗更多氧。而且,細菌會產生有毒物質。最終,水生生物會因缺乏清潔和含氧量高的水而受影響,甚至死亡。

大部份經由污水槽排出的洗潔精都含有磷酸鹽離子,可供植物和藻類作為養料。因此,藻類作為 養料。因此,藻類會在水面迅速生長,形成藻花。這些藻花阻擋陽光透入水中,導致某些水生植物因 缺乏陽光進行光合作用而死亡。

◆ 限制與誤差

考察的機會很難得,部份組員是首次到户外考察,但由於考察前一晚下過大雨,使考察環境有所不同。由於在選取位置上,我們選取了溪流的邊緣附近,平時那裡有可能是沒有溪水流經的,這會對我們的考察造成了一定的限制。例如溪邊生活的動物較少,雨水也會沖走部分的生物,亦有機會將上源的生物沖下來而停留於此。因此,我們在地點 1 找的生物較少。水生植物亦較少,相反一些溪邊植物就被水淹沒。這樣使我們考察結果的準確性降低。對於考察地點 1 所找到生物較小,我們難免會感失望,但值得一提的是,在地點 1,我們留意到有政府派員清潔河流,可想而知,該河流原本可能更受污染。河流在四季可能有不同的境況,我們考察的位置只是河的一小部分加上考察時間很短,所以並無法充分地收集足夠的數據,使我們的考察結果欠缺全面,準確。若有較長的考察時間,我們可分別考察上、中、下游,以得更全面的分析。

結論

户外考察是一個很好的學習機會,讓我們可以從四四方方的教室 走出來去體會大自然。出發前的一晚下了一場雨,本以為今次去不 成了。但是天公造美,我們在晴朗的一天出發,直到我們考察完成。 在這一次户外考察,我們嘗試了很多不同的測量儀器,並用以實踐。 同時亦利用即日取得的數據作出分析,研究溪流的生態。將我們平 時所學到的知識,應用於真正的大自然考察中。

生活在都市的我們,很小有機會接觸大自然,透過是次考察,我們可真正了解到人類活動如何影響大自然生態,加強我們的環保意識。希望將來仍有機會到其他地方進行戶外考察,不斷學習,因為是次考察過程中,我們未能學習到某些考察技巧(例如樣方、鹽度計等)。